- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Lim, Alice (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper, we classify the compact locally homogeneous non-gradient m -quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m -quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m -quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S 1 is the only compact manifold of any dimension which admits a metric which is nontrivially m -quasi Einstein and Einstein.more » « less
-
Lim, Alice (, Proceedings of the American Mathematical Society)In this paper, we generalize topological results known for noncompact manifolds with nonnegative Ricci curvature to spaces with nonnegative N N -Bakry Émery Ricci curvature. We study the Splitting Theorem and a property called the geodesic loops to infinity property in relation to spaces with nonnegative N N -Bakry Émery Ricci curvature. In addition, we show that if M n M^n is a complete, noncompact Riemannian manifold with nonnegative N N -Bakry Émery Ricci curvature where N > n N>n , then H n − 1 ( M , Z ) H_{n-1}(M,\mathbb {Z}) is 0 0 .more » « less
An official website of the United States government
